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Abstract
Contrails are potentially the largest contributor to aviation-attributable climate change, but
estimates of their coverage are highly uncertain. No study has provided observation-based
continental-scale estimates of the diurnal, seasonal, and regional variability in contrail coverage.
We present contrail coverage estimates for the years 2018, 2019 and 2020 for the contiguous United
States, derived by developing and applying a deep learning algorithm to over 100 000 satellite
images. We estimate that contrails covered an area the size of Massachusetts and Connecticut
combined in the years 2018 and 2019. Comparing 2019 and 2020, we quantify a 35.8% reduction
in distance flown above 8 km altitude and an associated reduction in contrail coverage of 22.3%.
We also find that the diurnal pattern in contrail coverage aligns with that of flight traffic, but that
the amount of contrail coverage per distance flown decreases in the afternoon.

Condensation trails, or contrails, are ice clouds that
form as a result of the mixing of cold, humid air
with aircraft engine exhaust plumes [1]. They affect
the radiative balance of Earth by increasing global
cloudiness, interacting both with incoming solar and
outgoing thermal radiation [2]. Contrails have been
shown to result in net positive radiative forcing (RF),
thereby contributing to climate change [3]. Studies
find that contrails and contrail cirrus may be the
largest contributor to aviation-attributable RF [2],
potentially exceeding contributions of aviation CO2

emissions. This means that contrails associated with
today’s flight activity may result in as much instant-
aneous warming as the entire atmospheric stock
of aviation-attributable CO2 that has accumulated
since the beginning of the jet age. Because reduc-
tions in contrail RF could be achieved quickly and
could halve aviation-attributable warming, contrail
avoidance strategies have been widely investigated
[4–6]. Successful implementation of such strategies

requires improved capabilities for observing contrails
and contrail cirrus, and empirically quantifying their
impact and relation to flights. In particular, the
diurnal cycle of contrail formation and persistence
has not previously been accurately quantified, butwill
affect the net climate impacts of individual flights.

Most estimates of contrail properties and climate
impacts have relied on atmospheric modelling [7–9].
Observational data on contrails can help the valida-
tion of thesemodels and potentially reduce the uncer-
tainty in estimates of overall RF from contrails, which
currently vary by an order of magnitude [2, 10]. Sev-
eral studies have quantified contrail coverage and
impacts using data from satellites in low earth orbit
(LEO) [3, 11–15]. Since these satellites are typically
constrained to two overpasses per day, LEO-based
observations of contrails are less suited to gather
information on diurnal variations. This is of partic-
ular relevance to contrails, where the likelihood of
formation and the overall impacts vary significantly
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between times of day. To obtain more than one night-
time and one daytime image from LEO-based obser-
vations requires combining data from multiple satel-
lites, as in prior work by Duda et al [15]. On the other
hand, geostationary satellites can provide continu-
ous observations at large scale, but contrail detection
on images from these satellites is difficult due to the
coarser spatial resolution. Whereas many LEO satel-
lite imagers feature pixel sizes of 1 km or less, imagers
on geostationary satellites with small-footprint pixels
(e.g. 2 km) for infrared bands have only recently
become available. This is important for automated
contrail detection because the average width for most
contrails is 4–6 km and individual contrails can be
much narrower, making them difficult to detect in
geostationary imagery [13]. Prior to this work, the
only automated analyses of contrails on geostationary
satellite imagery have involved tracking a small num-
ber of contrails which were first identified using LEO
imaging [16–18], a case study of contrail clusters over
the Great Lakes [19], and application of a contrail
classification network to three months of Advanced
Himawari Imager data [20]. As such, this study is
the first to apply an automated contrail detection
algorithm which operates at a pixel-by-pixel level to
multiple years of geostationary satellite data.

In this work we present the results of the first
automated contrail detection algorithmworking with
geostationary satellite imagery from the Advanced
Baseline Imager (ABI) [21] aboard the Geostation-
ary Operational Environmental Satellite 16 (GOES-
16). The detection algorithm is a convolutional neural
network that is trained with a dataset of 103 manu-
ally labelled GOES-16 ABI-L2-MCMIPF [22] images
that cover the contiguous United States, and there-
fore the majority of air traffic in the satellite’s field
of view. We estimate contrail coverage from approx-
imately 100 000 satellite images, amounting to nearly
six trillion pixels, for the period 1 January 2018
to 31 December 2020. This includes the period of
unprecedented reduction in aircraft traffic due to the
COVID-19 pandemic. A single image is made up of
sixmillion pixels, with each pixel representing an area
of approximately 2 by 2 km.

The dataset containing manual labels of con-
trails was produced by individuals trained to inter-
pret remote sensing data. The labellers made use of
the Ash RGB product, a false colour composite that
combines four of the GOES-16 ABI infrared bands, in
order to improve their ability to distinguish between
clouds. Contrails tend to occupy significantly smal-
ler portions of the image than natural clouds and are
typically only a few pixels wide, making the manual
identification and labelling of contrails a costly and
difficult task. Contrails were primarily identified by
looking for line-shaped thin cirrus clouds, but natural
cirrus clouds may also exhibit such linear patterns
and are therefore a potential source of incorrectly
labelled contrails. Both contrails in clear sky and

embedded within cirrus clouds have been labelled.
In order to avoid mis-labelling natural cirrus as con-
trails we presented labellers with a sequence of images
of the 2 h leading up to the image to be labelled.
This allowed the labellers to distinguish between nat-
ural cirrus and contrails, since contrails first appear
with a linear shape and slowly deform as they age,
whereas natural cirrus often shows the opposite beha-
viour where linear shapes evolve as they age under the
influence of local wind patterns. Further details on
the labelling procedure, including examples and val-
idation procedures, are given in the methods section
and supplementary information (available online at
stacks.iop.org/ERL/17/034039/mmedia).

We evaluate the performance of the contrail
detection algorithm on a test set of 19 manually
labelled images which have not been used while train-
ing the algorithm. Averaged over this test set, the
precision and recall are 52.5% and 50.2%, respect-
ively, indicating a balance between over- and under-
prediction by the network. Both of these metrics are
in terms of the number of pixels. When quantifying
precision and recall in terms of connected compon-
ents, we obtain a precision of 51.7% and a recall of
71.3%. Precision and recall are quantified by both sea-
son and time of day in extended figure 5.

Both these performance metrics are comparable
to those of other contrail detection algorithms which
used higher-resolution LEO satellite data [11–13]. In
terms of contrail coverage, our average error on the
test set is 0.0146%. Examples of our algorithm’s per-
formance on the testing set are given in the supple-
mentary materials.

Once trained, we use our algorithm to estimate
contrail coverage every 10–15 min from 1 January
2018 to 31 December 2020, resulting in over 0.8 tril-
lion pixel-wise estimates of contrail coverage for the
contiguous US as well as parts of Canada, Mexico, the
Caribbean and the Pacific and Atlantic oceans. We
also use flight traffic data [23] derived from ADS-B
measurements to study the relationship between con-
trail coverage and flight. In each image, each of the
six million pixels are classified as either ‘contrail’ or
‘not contrail’ before the contrail-covered area is calcu-
lated. Further details on the computation of contrail
coverage from the algorithm output can be found in
the methods section.

1. Results

1.1. Contrail coverage over the contiguous United
States
Figure 1 shows our estimated average contrail cov-
erage for 2018–2019. Major flight corridors (e.g. off
the East Coast of the US and along transcontinental
routes) and ‘holes’ in coverage at major airports as
aircraft descend below contrail forming regions (e.g.
Miami) are visible. Averaged over 2018 and 2019,
we find that 0.17% of the domain was covered by
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Figure 1.Mean contrail coverage from 1 January 2018 to 31 December 2019. Pixel intensity indicates the percentage of time during
which a contrail was observed in that location. Each pixel is the average of approximately 70 000 individual observations. Some
imperfections, such as scanline artifacts detected as contrails, are visible. These are removed before further analysis (see methods).

contrails. At 43 000 km2 this is an area similar in size
to Massachusetts and Connecticut combined. When
limited to airspace over the contiguous US, average
contrail coverage is 0.26%.When we consider the air-
space over the oceans in the domain, we find that
on average 0.15% is covered with contrails. These
estimates of contrail coverage are lower than those
reported in other studies, but direct comparison with
previous estimates is complicated by several factors.
To date, estimates of contrail coverage are exclusively
based on either models or detections on LEO satel-
lite imagery: no estimate of contrail coverage has been
based on imagery at the 10–15 min resolution we use
here. We are therefore able to average over the entire
day instead of a handful of overpass times, as was
the case for previous satellite-based studies. One such
study by Palikonda et al [12], also focusing on the
continental United States, found a 1.29% and 0.71%
average coverage for morning (7:30 local time) and
afternoon (14:30 local time) overpasses respectively.
Part of the discrepancy between these numbers and
the ones found here may be explained by the over-
pass times of the LEO satellites. For example, if we
take the average of two years of contrail detections as
observed between 10 and 11 am local solar time (rel-
evant to a sun-synchronous satellite), we find a cov-
erage fraction 57% greater than the ‘true’ mean value
(considering only the six areas shown in figure 2).
Depending on the overpass time, this discrepancy
varies from −52% to +90%, illustrating how over-
pass time can affect estimates of contrail coverage. If
we consider the average contrail coverage for a day-
time (10–11:00 local time) and night-time (22–23:00

local time) overpass window, as was done in pre-
vious studies [13, 15], we find a smaller deviation
from themean value of 18%. This confirms that com-
bining contrail observations from LEO satellite over-
passes from different times can lead to less biased
estimates of the true average. Other differences with
previous satellite-based estimates may be attributed
to the coarser spatial resolution of the instrument
used in this study, which inherently limits the num-
ber of contrails visible on the relevant images. Based
on statistics of contrail width reported by Duda et al
[13], we estimate that between 10.2% and 12.2%
of contrails detected on 1 km resolution imagery
have widths less than 2 km. The numbers presen-
ted here are therefore a lower bound on contrail
coverage.

At longer timescales, we find that the stand-
ard deviation of the weekly-average distance flown
is 51%, whereas that of contrail coverage is 60.7%.
These statistics ignore the spatial distribution, and
its variation, of distance flown and contrail cover-
age, such that the actual contribution of weather to
the weekly changes is likely to be larger than these
numbers suggest. We also find that contrail coverage
peaks near the end of winter and start of the spring
with values of 0.35%–0.4%, and reaches it lowest val-
ues of 0.05%–0.1% in summer and early fall. Similar
seasonal and weekly variations in contrail coverage
have been found in previous studies [11–13, 24, 25].
In order to illustrate the day-to-day variation of con-
trail coverage and its relation to the synoptic met-
eorological conditions, we present a comparison of
the 500 hPa geopotential height and observed contrail
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Figure 2. Diurnal patterns in contrail coverage and flight activity for 2018–2019. Mean contrail coverage and distance flown per
hour by time of day for six different regions of the domain, as shown in the insets.

coverage for a sequence of four days in extended
figure 6.

1.2. Diurnal patterns in contrail coverage and
distance flown
In figure 2 we show the diurnal variation in both
contrail coverage and flight traffic in six different
regions of the US as a function of local time. For
all six regions, contrail coverage peaks between 08:00
and 09:00 at values between 0.31% (southwest) and
0.60% (northwest). Surface-based observations in the
US have also reported the frequency of contrail occur-
rence to peak in mid-morning [24]. Contrail cover-
age is minimized between 00:00 and 05:00 at values
between 0.084% (southwest) and 0.11% (northeast).
The resulting diurnal variations in contrail coverage
are between a factor of 3.3 (south central) and 5.2
(northeast). Overlaid on figure 2 we show the average
diurnal pattern of flight activity based on transpon-
der data. We find that distance flown peaks one to
three hours later between 09:00 and 11:00 local time
in all regions but theNortheast.Whereas contrail cov-
erage in all regions declines from its morning peak
value, distance flown remains approximately constant
up until the evening. A study by Palikonda et al [12],
covering a similar domain, also found a near halv-
ing of contrail coverage between 7:30 and 14:30 local
time. This may suggest that the sensitivity of contrail
coverage to flight activity is greatest at night and in
the early morning (141 m2 of cover per meter flown
between 6 am and noon), and is lowest in the after-
noon and early evening (85.2 m2 m−1 between noon
and 6 pm).

An alternative explanation could be a reduction in
detection efficiency of the algorithm in the afternoon,

but the validation of our algorithm’s performance
against manually labelled images does not corrobor-
ate this (see extended figure 5). However, it is also
possible that contrails are less recognizable in the
afternoon, both by means of manual and automated
identification. This may be the case if they were to
form within or below existing cirrus clouds which
have been observed to peak in coverage in the after-
noon [26]. Minnis et al [27] suggested that spread-
ing of contrails formed during the morning could
lead to less visually distinct contrails forming in the
afternoon as they occur in a pre-existing cirrus cloud
of artificial origin. This may contribute to the per-
ceived reduction in contrail coverage during the after-
noon, in both the human-labelled and automatically-
labelled images. Further study is needed to explain
this behaviour, possibly involving additional sources
of observations and models.

We also find seasonal variations in contrail cov-
erage, independent of traffic volumes. Coverage per
unit distance flown is at its greatest during winter and
spring (293 and 296 m2 m−1), and at its lowest in
summer (138 m2 m−1). This is consistent with prior
studies of observed contrail coverage [12, 19].

1.3. The impact of COVID-19 on contrail coverage
In figure 3 we show contrail coverage as a function of
time for three full years, namely 2018, 2019 and 2020.
This includes the unprecedented long-term reduc-
tion in worldwide flight activity during the COVID-
19 pandemic, which we show here by plotting the
distance flown above 8 km pressure altitude in the
analysis domain (dashed line). The most significant
flight activity reduction occurs at the end of March,
after which it slowly increases. In the month of April,
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Figure 3. Contrail coverage for 2018, 2019 and 2020. Solid lines show 10 days rolling means of contrail coverage for the full
domain, covering the Contiguous United States, for the years 2018, 2019 and 2020. We also show distance flown per hour (10 days
rolling mean) above 8 km pressure altitude in the domain for the year 2020 as the dashed line.

flight distance is on average 65.3% (95% CI: 63.5%,
67.0%) lower than in themonth ofMarch, accompan-
ied by a relative reduction of 48.7% in observed con-
trail coverage. Other studies have also found reduc-
tions in cirrus coverage, which contrail coverage is a
part of, for these periods and correlate the changes
with those in air traffic [28, 29].When comparing the
year 2020 to the aggregate of 2018 and 2019, we find a
reduction of 24.1% (95% CI: 23.3%, 24.9%) in aver-
age contrail coverage. When directly comparing 2019
and 2020, the reduction is 22.3% (95% CI: 21.4%,
23.2%). This is less than the change in distance flown,
which reduced by 35.8% (95% CI: 35.3%, 36.5%) in
2020 compared to 2019. For comparison, month-to-
month variation in the total distance flown by US
domestic carriers in 2018 and 2019 was less than
±10%, based on data from the US Bureau of Trans-
portation Statistics [30].

Some insight into the cause of this discrepancy
can be gained by comparing the non-COVID years of
2018 and 2019. Distance flown in the target domain
increased by 5% from 2018 to 2019, while contrail
coverage instead fell by 5.4% (95% CI: 4.3%, 6.5%),
similar to the differences found between 2006 and
2012 by Duda et al [15]. This difference is similar
in magnitude to the discrepancy between the reduc-
tion in distance flown during 2020 and the reduction
in contrail coverage, and demonstrates the possibility
of a non-linear relationship between flight distance
and contrail coverage which is subject to inter-annual
(meteorological) variability. This is further corrobor-
ated by recent modelling studies addressing the con-
trail changes induced by COVID-19 related air traffic
reductions [31, 32].

2. Discussion

We use machine learning and geostationary satellite
imagery to provide the first continuous, kilometre-
scale estimate of contrail coverage, enabling us to
quantify the relationship between flight traffic and

contrails at sub-hourly temporal resolution. The large
volume of analysed data illustrates the significant
day-to-day variability in contrail coverage, but also
allows us to extract several insights by performing
long-term averaging. For example, the averaged spa-
tial distribution of contrail coverage shows the pre-
dominant air traffic corridors, reproducing patterns
such as the parallel flight tracks running south–east
from airports in New England. Our observations,
spanning three full years, have also allowed us to
quantify the impact of the air traffic reductions asso-
ciated with the COVID-19 pandemic on contrail
coverage.

Our results suggest a non-linear relationship
between contrail coverage and distance flown, with
significant influence from meteorological variability.
Contrail coverage in 2019 was 5.4% lower than in
2018, in spite of a 5% increase in air traffic (as meas-
ured by the distance flown).Our results also show that
contrail coverage in all US regions peaks in the local
morning and declines by 30%–50% in the afternoon,
while distance flown remains almost constant over
the same period. An alternative explanation of this
phenomenon would be that both manual and auto-
mated identification of contrails on satellite images is
limited in the afternoon, possibly by increased nat-
ural cirrus coverage. We also observe non-linearity
between distance flown and contrail coverage when
comparing 2019 and 2020. We find that contrail cov-
erage decreased by 22.3% from 2019 to 2020, whereas
distance flown at altitudes above 8 km decreased by
35.8%.

Further research is needed to determine the exact
origin of the discrepancies between distance flown
and observed contrail coverage, both in terms of
diurnal patterns and long-term changes such as those
associated with the COVID-19 pandemic. These dis-
crepancies may substantively change not only estim-
ates of the climate impacts resulting from aviation,
but also how those impacts might be meaningfully
reduced.
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